Managing Complexity ?

Stefan Thurner

WWW. complex-systems.meduniwien.ac.at
www.santafe.edu

To manage a system means that you are able to predict the possible outcomes of actions you take

If you can not predict the outcome of management actions - you do not manage or control the system: you are subject to luck, fate, external events

What kind of systems can you predict ?

- Very small ones: physics of a few bodies: planet-sun, quark-quark, rocket-enemy
why ? can manage to handle laws of physics
- Very large ones: gases, solid bodies
why ? do not interact strongly \rightarrow describe laws of physics with laws of statistics
- Managing CS has been out of scope since beginning of mankind
why? too large to handle governing 'laws', too small for statistics to work, too interconnected

What are Complex Systems ?

- CS are made from many elements
- Elements are strongly interacting with each other
- CS depend on details of the system: who interacts with whom
- CS often pose chicken-egg problems
\rightarrow So far: very hard to handle in predictive ways

Why is it so hard to predict complex systems?

- Mathematical and statistical tools break down
- Too big to handle
- Not enough data available
- No concept of the backbone of CS - networks

Typical Complex Systems

- Living systems
- Social systems
- Economic/financial systems
- Firms + organisations
all these systems are evolutionary and are based on networks

CS are co-evolving multiplex networks

- States of individuals/firms change as a function of NW interaction
- Network changes as a function of the states of the agents first point only: physics
second point: makes it a complex system: society, eco-system, market, ...

The game changer: The computer + new math

- Network theory: quantify causal processes on networks
- Data availability: electronic fingerprints everywhere
- New statistics: new inference methods and superstatistics
- Storage and computation costs practically nothing

If you do not have all of the above \rightarrow back to start: can NOT manage CS
If you can map a CS into a dynamical NW \rightarrow can manage CS

Theory of CS: combination of dynamical systems and NWs

Networks

- Network: connections of points by lines
- Usually NW has structure + random components
- Any data that can be stored in database can be represented as network
- Network theory: quantify stability, efficiency, hierarchy, clustering, ...
- Novel mathematics: networks become technically manageable

Networks are dynamical: here sits the devil !

- Networks change over time
- Dynamical processes happen on networks
- Dynamical processes happen on networks which change (chicken-egg)
- Networks are not independent: they influence each other \rightarrow Multiplex

Example I
 What if we know everything? What can we predict?

- then we have solved the data problem \rightarrow good!
- only problem: what to do with all that information?

Massive Multiplayer Online Game - pardus.at a toy for the new data generation

Complete knowledge on a human society

Have all data of all 500.000 players of all of their actions and interactions performed in a 'second life' like virtual world www.pardus.at

- have complete knowledge of an entire human society
- have time evolution of the co-evolving multiplex and states

The properties of the subnetworks

- Positive links are highly reciprocal, negative links are not
- Power-law degree distributions indicate aggressive actions
- Positive links cluster

Network-network interactions

How does one network shape and influence the other?

Proceedings of the National Academy of Science USA (2010)

How humans organize to stabilize their social NWs

Strong formulation of balance	B	U	B	U
Weak formulation of balance	B	U	B	B
N_{Δ}	26,329	4,428	39,519	8,032
$N_{\Delta}^{\mathrm{rand}}$	10,608	30,145	28,545	9,009
z	71	-112	47	-5

Social balance theory - test empirically with natural science quality

Gender differences in 'networking'

E

Predict: Where will you go next ?

Scientific Reports (2012)
W\%
Mynimicisi \square e

Alternative representation of humans - behavioral code

Actions every (human) player can engage in life (game)

C ... communicate
T ... trade
F ... establish a friendship link
X ... remove an enemy link
A ... attack
B ... place a bounty on someone
D ... delete a friendship link
E ... establish an enemy link

Action-streams

Player 199 all ...CCAABCAAAAATTTAAATCCCCCCTBXCCFFFF.
\rightarrow Analyze the code as if it was the genome

Predict: What is your next action ?

PLoS ONE (2012)

Example II
 Complexity in financial networks and systemic-risk management

- If you lend something to somebody: want to know creditworthiness
- In a network can not do that, unless know riskiness of EVERYBODY
- No rational decision making on lending possible without transparency
- Central Banks have almost complete information

Interbank credit NW of Austria

Asset-liability NW of all Austrian banks, October 2003
Quantitative Finance (2005)

All financial flows between Austrian banks

aggregated 2005-2006, 211 Banks, 4.187.943 transactions, volume 11.07 trillionEUR
European Physics Journal B (2009)

Financial networks - management of systemic-risk

- With this information \rightarrow define a systemic risk measure: DebtRank
- Can regulate the interbank system that it becomes systemically risk free
- Idea: forbid borrowing from systemically risky banks

http://www.bloomberg.com/news/2013-02-10/fix-finance-by-shedding-light-on-its-complexities.html

Example III
 What is complex in a firm or corporation ?

- Corporation is an evolutionary network of communication-flows
- Management controls these flows and tries to re-arrange the NW
- With and without management: the network evolves = re-arranges
\rightarrow CS tools assist to:
- know the network (reality check)
- find ways to re-arrange it (optimize)
- monitor its change after managerial intervention

Note: it is not easy to tell a network how to re-arrange !

Why CS in corporations?

Imagine new CEO entering a firm with say more than 1000 employees

- Knows organigram. Knows what departments should do + hierarchy
- Does not know: what departments are in reality
- Are departments structured in reality as the CEO thinks they are?
- How hierarchical is the firm in reality?
- Do re-structuring interventions work?
- Do optimal solutions to organization structure exist, given real structure
\rightarrow Answer to this: communication flows

Communication: the nervous system of a firm

- Telephone bill: every call = one line

ID caller | dpt caller |ID called | dpt called | time | duration

```
100005050404716102009140100 00 14
```

1000350500912041120091028000004
1000350500322041120091627000110
1000450504047300920090827000258

- emails: log-files on server: every mail = one line

ID Sender \| dpt sender \| ID recipient \| dpt recipient \| kB | time sent
100001150819350948620091103071315
100001150819350344420091103071315
100001150948550299620091103132711
100001150948550312220091103132711

emails of corporation, december 2011

- what do we see? nothing! \rightarrow network theory
with kind permission from Günther Weiss
emails: max. spanning tree - departments, dec 2011

- Support to questions: what is state of the firm - is restructuring needed?
- Degree of clustering \rightarrow rethink dept. structure? monitor restructuring?
with kind permission from Günther Weiss

Destroy the core and you collapse !

- Loss of core often leads to collapse of network

with kind permission from Günther Weiss

Conclusion

- Complexity arises through inter-connectedness: networks
- Science: complexity catastrophe possible: quick \& drastic changes
- If can map CS to dynamical co-evolving NW \rightarrow can manage it
- Can manage systemic-risk (risk of drastic change - collapse)

Conclusion II message for strategic management

- Communication-network monitoring
- know your corporation
- restructure departments
- monitor restructuring events
- Core-detection of a corporation
- verify keystone-emlpoyees
- identify potentials easy to realize: AC cycle analysis
- identify cores
- Problems with these techniques:
- Legal issues, privacy rights, anonnymization, and data storage

